1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
| from sage.all import * import itertools
def matrix_overview(BB): for ii in range(BB.dimensions()[0]): a = ('%02d ' % ii) for jj in range(BB.dimensions()[1]): a += ' ' if BB[ii, jj] == 0 else 'X' if BB.dimensions()[0] < 60: a += ' ' print(a)
def dual_rsa_liqiang_et_al(e, n1, n2, delta, mm, tt): ''' Attack to Dual RSA: Liqiang et al.'s attack implementation '''
N = (n1 + n2) // 2 A = ZZ(floor(N^0.5))
_XX = ZZ(floor(N^delta)) _YY = ZZ(floor(N^0.5)) _ZZ = ZZ(floor(N^(delta - 1./4))) _UU = _XX * _YY + 1
M = Matrix(ZZ, [[A, e], [0, n1]]) B = M.LLL() l11, l12 = B[0] l21, l22 = B[1] l_11 = ZZ(l11 / A) l_21 = ZZ(l21 / A)
modulo = e * l_21 F = Zmod(modulo)
PR = PolynomialRing(F, 'u, x, y, z') u, x, y, z = PR.gens()
PK = PolynomialRing(ZZ, 'uk, xk, yk, zk') uk, xk, yk, zk = PK.gens()
PQ = PK.quo(xk*yk+1-uk)
f = PK(x*(n2 + y) - e*l_11*z + 1) fbar = PQ(f).lift()
gijk = {} for k in range(0, mm + 1): for i in range(0, mm - k + 1): for j in range(0, mm - k - i + 1): gijk[i, j, k] = PQ(xk^i * zk^j * PK(fbar) ^ k * modulo^(mm-k)).lift()
hjkl = {} for j in range(1, tt + 1): for k in range(floor(mm / tt) * j, mm + 1): for l in range(0, k + 1): hjkl[j, k, l] = PQ(yk^j * zk^(k-l) * PK(fbar) ^ l * modulo^(mm-l)).lift()
monomials = [] for k in gijk.keys(): monomials += gijk[k].monomials() for k in hjkl.keys(): monomials += hjkl[k].monomials()
monomials = sorted(set(monomials))[::-1] assert len(monomials) == len(gijk) + len(hjkl) dim = len(monomials)
M = Matrix(ZZ, dim) row = 0 for k in gijk.keys(): for i, monomial in enumerate(monomials): M[row, i] = gijk[k].monomial_coefficient(monomial) * monomial.subs(uk=_UU, xk=_XX, yk=_YY, zk=_ZZ) row += 1 for k in hjkl.keys(): for i, monomial in enumerate(monomials): M[row, i] = hjkl[k].monomial_coefficient(monomial) * monomial.subs(uk=_UU, xk=_XX, yk=_YY, zk=_ZZ) row += 1
matrix_overview(M) print('=' * 128)
B = M.LLL()
matrix_overview(B)
H = [(i, 0) for i in range(dim)] H = dict(H) for j in range(dim): for i in range(dim): H[i] += PK((monomials[j] * B[i, j]) / monomials[j].subs(uk=_UU, xk=_XX, yk=_YY, zk=_ZZ)) H = list(H.values())
PQ = PolynomialRing(QQ, 'uq, xq, yq, zq') uq, xq, yq, zq = PQ.gens()
for i in range(dim): H[i] = PQ(H[i].subs(uk=xk*yk+1))
I = Ideal(*H[1:20]) g = I.groebner_basis('giac')[::-1] mon = list(map(lambda t: t.monomials(), g))
PX = PolynomialRing(ZZ, 'xs') xs = PX.gen()
x_pol = y_pol = z_pol = None
for i in range(len(g)): if mon[i] == [xq, 1]: print(g[i] / g[i].lc()) x_pol = g[i] / g[i].lc() elif mon[i] == [yq, 1]: print(g[i] / g[i].lc()) y_pol = g[i] / g[i].lc() elif mon[i] == [zq, 1]: print(g[i] / g[i].lc()) z_pol = g[i] / g[i].lc()
if x_pol is None or y_pol is None or z_pol is None: print('[-] Failed: we cannot get a solution...') return
x0 = x_pol.subs(xq=xs).roots()[0][0] y0 = y_pol.subs(yq=xs).roots()[0][0] z0 = z_pol.subs(zq=xs).roots()[0][0]
assert f(x0 * y0 + 1, x0, y0, z0) % modulo == 0
a0 = z0 a1 = (x0 * (n2 + y0) + 1 - e * l_11 * z0) / (e * l_21)
d = a0 * l_11 + a1 * l_21 return d
if __name__ == '__main__': delta = 0.334 mm = 4 tt = 2
n1 = int("1b 5d 4f e0 aa 67 82 e2 75 d4 ce 12 a6 d5 75 62 ef bb e7 db 6f 52 77 25 5b 89 17 29 bf a2 a1 8d 3e db 49 84 3d 79 89 a3 7b 95 16 be 2d f8 ca 93 90 58 e6 5f 64 b5 fb 20 71 be a4 f5 f8 d1 39 28 95 b3 2b f0 37 7d 99 f4 f7 99 79 12 5e 5d b0 1c db 50 80 a1 c2 d6 65 c9 ac 31 b5 82 30 25 49 9c 95 13 27 7b ae 5e 7a 84 6c d2 71 c4 39 6e 2b a2 19 02 0e 58 a9 05 5c b1 8a 28 d3 6a 00 bf 71 7b ".replace(" ",""),16) e = int("07 9f 5c cc 66 57 67 b4 a2 57 e5 c1 ff 56 e9 80 3d f2 e5 65 03 02 da ad 42 01 05 fe 67 24 47 74 3b d3 f0 be a1 c4 6a 49 87 93 2e 9a 88 6c a8 7a 7a fd 77 96 ab f1 e5 62 9c 49 86 fe 4f 22 e8 9c dc e7 ab b0 66 24 46 51 46 a2 e2 b6 ca 9a b3 19 6c ea b7 46 79 74 c1 dc 45 60 8a 20 04 11 b2 91 fd af 99 f7 d8 0d ce 4d b3 56 6f 4a 9e 2e 57 4c 62 24 cd 07 d8 06 38 d2 8f 78 20 bc f4 b4 91 43".replace(" ",""),16) n2 = int("07 1c 32 4e 87 69 49 31 87 c1 5f 72 d5 cc 69 57 29 b4 84 88 ee 3f bd 01 db 00 d5 c4 78 f0 8c 7c f3 20 93 ba 61 74 50 51 d3 e9 d1 69 52 3a a9 14 38 18 1f 47 67 9a ff 5e dd 22 95 0f 74 a1 eb 14 43 32 0a aa 5d 97 f5 c1 e8 1b 5e f9 a3 e6 9b a6 69 ab c4 c6 c4 b4 05 f5 08 8a 60 3a 74 f9 bc ef 88 82 3b 45 23 57 41 14 c8 10 60 08 38 72 81 96 f8 e5 e0 d4 ae ee ea b7 9d d8 68 3a 72 f3 c0 17 ".replace(" ",""),16) c = bytes_to_long(open("ciphertext.txt",'rb').read())
d = dual_rsa_liqiang_et_al(e, n1, n2, delta, mm, tt) print(f"d = {d}") m1 = pow(c,int(d),n1) m2 = pow(c,int(d),n2) flag1 = long_to_bytes(m1) flag2 = long_to_bytes(m2) print(flag1 + flag2)
|